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Ruthenium complexes such as Ru,(CO)i2 and RuCl, - nH@ show high catalytic 
activity in the allylation of aldehydes by allylic acetates at 120 * C to give homoal- 
lylic alcohols in good yields. 

Extensive studies have been made on the ~-ally1 complexes [l], since they are 
often key intermediates in various homogeneous catalytic reactions [2]. In particular 
the palladium catalyzed allylation with allylic compounds represented by allylic 
acetates has been successfully applied to synthetic organic chemistry [3* 1. In this 
process, the allylic acetates can be regarded as allylic cation synthons (eq. l), which 
can react with nuclcophiles. 

Rw OAc 3 R* (1) 

Recently, more attention has been paid to the umpolung [4] of these electrophilic 
?r-allylpalladium intermediates. Inanaga et al. [5] and Masuyama et al. [6] reported 
palladium-catalyzed allylation reaction of aldehydes and ketones with allylic acetates 
[5,6a] and alcohols [6b]. However, these reactions require a stoichiometric amount of 
SmI, [5] or SnCl, [6] to generate nuclcophilic allylic species. Trost et al. reported 
the formation of a conjugated diene, and they claimed that the a-allylpalladium 
intermediate acted as a nuclcophile rather than playing its normal role as an 
electrophile [7]. 

In the course of our study on ruthenium-catalyzed activation of formyl function- 
alities [8], we discovered a novel ruthenium catalysis in which ally1 acetates react 
with aldehydes to give homoallylic alcohols (eq. 2). Noteworthy is that the reaction 
proceeds without the aid of additional metal compounds [5,6]. 

* Reference number with asterisk indicates a note in the list of references. 
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Table 1 

Ruthenium complex catalyzed allylation of aldehydes with allylic compounds n 

Run Aldehyde Allylic Product 
compound 

Yield 
(W) b 

1 C6H3CH0 
2 CH,(CH,),CHO 
3 C, H, CH=CHCHO 
4 C,H,CHO 
5’ &H,CHO 
6 &H5CH0 
7 C,H,CHO 
8 C,H, CHO 
9d C,H,CHO 

CHI =CHCH ,OAc 
CH, =CHCH zOAc 
CH ,=CHCH *OAc 
CH,=CHCH(CH,)OAc 
CH,CH=CHCH,OAc 
CH 2 =CHCH ,OCO,CH 3 
CH,=CHCH,Br 
CH,=CHCH,OH 
CH z =CHCH ,OAc 

C6HSCH(OH)CH,CH=CH, 87 
CH3(CH2)SCH(OH)CH2CH=CHz 57 
C,H,CH=CHCH(OH)CH,CH=CH, 48 
C,H,CH(OH)CH(CH,)CH=cH, 84 
C,H,CH(OH)CH(CH,)CH=cH, 64 
C,H,CH(OH)CH,CH=CH, 39 
C,H,CH(OH)CH,CH=CH, 38 
- 0 
C,H,CH(OH)CH,CH=CH, 91 

n Aldehyde (10 mmol), allylic compound (3.3 mmol), triethylamine (10 mrnol), Ru,(CO),, (0.033 mmol) 
and THF (8.0 ml) at 120°C for 24 h under 10 kg cm-’ of initial carbon monoxide pressure. 
b Determined by GLC based on the amount of allylic acetate charged. c At 140°C. d RuCl,-nH,O 
(0.10 mmol) in place of RQ(CO)~~. 

FIu complex ( l-3 mol% ) 
R-CHO l &v OAc 

Et3N , CO 
(2) 

Aromatic, aliphatic, and cr,&unsaturated aldehydes are smoothly allylated with 
allylic acetates in good yields in the presence of a catalytic amount of RUBLE 
(Table 1). When cinnamaldehyde was treated with ally1 acetate, only the 1,2-ad- 
dition product was obtained (run 3). l-Methylallyl acetate and (E)-crotyl acetate 
gave a single regio- and the same diastereo- (etythro / three 4/6) mixture as product 
(runs 4,5), indicating that the reaction proceeds via a a-allylruthenium [9] inter- 
mediate. The competitive allylation of benzaldehyde and acetophenone gave only 
the corresponding secondary homoallylic alcohol from benzaldehyde in 73% yield, 
while acetophenone was recovered in 80% yield. 

Carbon monoxide was essential to the catalytic activity, and under an argon 
atmosphere, the reaction did not occur at all. Addition of base was also indispensa- 
ble. Of the organic bases, triethylamine was most effective. Other tertiary amines 
such as N-methylpyrrolidine and tributylamine can be used. However, N,N-dimeth- 
ylaniline, pyridine and K&O, were ineffective. The Effect of leaving groups of the 
allylic compounds was examined. Ally1 carbonate and ally1 bromide did not give 
high yields (runs 6 and 7). On the other hand, ally1 alcohol [6b] did not react at all 
under the present reaction conditions (run 8). 

In contrast to Ru(COD)(COT) or Ru(CO)~(PP~,),, RuCl, . nH,O also showed 
high catalytic activity (run 9). When RuCl, - nH,O was employed as the catalyst, 
RuCl- nH,O was reduced to a ruthenium carbonyl species after the reaction, 
judging from FT-IR absorptions at 2020, 1968, and 1935 cm-l. Under an argon 
atmosphere with RuCl, * nH,O, no carbonyl species was detected and the allylation 
reaction did not take place. Thus, the real catalyst species would be a low-valent 
ruthenium carbonyl, which is possibly anionic [lo *]. Carbon monoxide pressure 
may be essential to stabilize such species. 

The hydrogen source for the products is probably triethylamine, because it is well 
known that ruthenium [ll] and other transition metal [I21 complexes have high 
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catalytic ability in the transfer of hydrogen from amines under similar reaction 
conditions. Formally, this allylation reaction can be regarded as a catalytic umpo- 
lung of the wallyh-uthenium intermediate. Further mechanistic studies, including 
the characterization of active catalyst species, are in progress. 
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